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Abstract. General formulae for thermal diffuse scattering from quasicrystals are applied to the case of
dodecagonal quasicrystals from corresponding elasticity theory. Contours of constant diffuse scattering in-
tensity are illustrated. Unlike ordinary crystals, shapes of isointensity contours are much more complicated
and vary even among the collinear Bragg spots. Diffuse scattering patterns in the plane perpendicular to
a given zone axis are associated with corresponding specific elastic constants. Information about elastic
constants can be extracted from quantitative analysis of diffuse scattering patterns.

PACS. 61.44.Br Quasicrystals

1 Introduction

Since the discovery of the quasicrystalline icosahedral
phase in rapidly quenched Al-Mn alloy [1], much effort has
been paid to the studies of such new materials. The strik-
ing characteristic of quasicrystals is the existence of sharp
Bragg peaks. However, distortion and peak broadening
observed in diffraction patterns revealed some systematic
deviations from the ideal quasicrystal model [2,3]. Strains
in phonon and phason variables or quenched dislocations
have been invoked to account for experimental observation
of peak positions and peak widths in some detail [4,5].
Socolar and Wright have examined the distinctive shapes
of Bragg spots observed in icosahedral phases and con-
structed a uniform phason strain field within a grain that
reproduced the experimental peak shapes [6]. Jaric and
Nelson [7] have developed an alternative theory of diffuse
scattering from incommensurate crystals and quasicrys-
tals due to spatially fluctuating thermal and quenched
strains and applied their derived general formulae to a spe-
cific case of icosahedral quasicrystals according to elastic
properties of icosahedral quasicrystals which have been
examined intensively [8–11]. With the help of this the-
ory, the onset of hydrodynamic instability of icosahedral
phases has been discussed [12,13]; the diffuse scattering lo-
cated close to Bragg reflections has been studied as a func-
tion of the temperature on a single grain of the Al-Pd-Mn
icosahedral phase using elastic neutron scattering and the
ratio of two phason elastic constants was obtained [14,15].
Recently, we discussed diffuse scattering from decago-
nal [16], octagonal [17] and pentagonal quasicrystals [18].

Dodecagonal quasicrystals were observed experimentally
in Cr70.6Ni29.4 [19], Ni2V3, Ni10SiV15 [20] and Ta-Te [21]
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alloys. Elasticity of planar quasicrystals with twelvefold
symmetry was discussed in some papers [22–24]. Recently,
significant progress has been made in studying the elastic
properties of two-dimensional (2D) quasicrystals including
dodecagonal quasicrystals by some authors [25–27]. Based
on the 5D crystallographic symmetry operations listed by
Janssen [28], they have derived all possible point groups of
2D quasicrystals of rank 5 and calculated the numbers of
independent forth-rank elastic constants of 2D quasicrys-
tals with group representation theory. Here and hereafter,
a 2D quasicrystal refers not to a real plane but to a 3D
solid with 2D quasiperiodic and 1D periodic structure.

In this paper, we will restrict our attention to do-
decagonal quasicrystals. Diffuse scattering from dodecago-
nal quasicrystals is formulated in Section 3 according to
elastic properties of dodecagonal quasicrystals summa-
rized in Section 2. Isointensity contours of diffuse scatter-
ing are calculated using the derived formulae and analysis
of the results are given in Section 4. The coordinate sys-
tems which we use for dodecagonal quasicrystals are given
in Appendix.

2 Point groups, Laue classes and elastic
properties of dodecagonal system

In this section we will illustrate the determination of ex-
plicit forms of invariant terms in the elastic energy and
elastic constant tensor for dodecagonal system. We would
like to limit the brief description of this method to a min-
imum necessary for the calculation. A more detailed dis-
cussion can be found in the literature [24–27].

If an analytic expression of the elastic free energy is
possible, it will be quadratic in the spatial gradients of
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Table 1. Character table for the point group C12v .

ε α α2 α3 α4 α5 α6 β αβ

Γ1 1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 1 1 −1 −1
Γ3 1 −1 1 −1 1 −1 1 1 −1
Γ4 1 −1 1 −1 1 −1 1 −1 1

Γ5 2
√

3 1 0 −1 −
√

3 −2 0 0
Γ6 2 1 −1 −2 −1 1 2 0 0
Γ7 2 0 −2 0 2 0 −2 0 0
Γ8 2 −1 −1 2 −1 −1 2 0 0

Γ9 2 −
√

3 1 0 −1
√

3 −2 0 0

phonon displacements u‖ and phason displacements u⊥
at long wavelength when it is expanded in terms of the
Taylor series to the second order. Since the elastic energy
is a scalar quantity, each individual term in it must be
invariant under all of the point group operations of the
structure. In order to construct these quadratic invari-
ants, we can invoke the group representation theory. As
an example, we consider the point group 12mm (C12v)
which has nine irreducible representations (see Tab. 1).
Two generators are the twelvefold rotation α and the mir-
ror operation β, which can be represented by

Γ (α) =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 1 0 0

0 0 0 0 1

 ,

Γ (β) =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 . (1)

The matrix representation Γ reduces to

Γ = Γ5 + Γ1 + Γ9. (2)

It follows that u‖ transforms under Γ5 +Γ1 and u⊥ trans-
forms under Γ9. Following the same process as described
in references [16–18], we obtain five quadratic invariants

(E11 +E22)2
, E2

33, (E11 +E22)E33,

(E11 −E22)2 + (2E12)2 , E2
13 +E2

23 (3)

and five independent elastic constants

C11, C12, C13, C33, C44, C66 =
1
2

(C11 − C12) (4)

associated with the phonon field. For the phason field six
components of ∂ju⊥i transform under

(Γ5 + Γ1)× Γ9 = Γ3 + Γ4 + Γ8 + Γ9. (5)

The components ∂1u
⊥
1 −∂2u

⊥
2 and ∂1u

⊥
2 +∂2u

⊥
1 transform

under Γ3 and Γ4 respectively, from which it follows that
there are two quadratic invariants:(

∂1u
⊥
1 − ∂2u

⊥
2

)2
,
(
∂1u
⊥
2 + ∂2u

⊥
1

)2
. (6)

The pairs (∂1u
⊥
1 + ∂2u

⊥
2 , ∂1u

⊥
2 − ∂2u

⊥
1 ) and (∂3u

⊥
1 , ∂3u

⊥
2 )

span the 2D irreducible representations Γ8 and Γ9 respec-
tively. Thus, we can obtain two quadratic invariants:(
∂1u
⊥
1 + ∂2u

⊥
2

)2
+
(
∂1u
⊥
2 − ∂2u

⊥
1

)2
,
(
∂3u
⊥
1

)2
+
(
∂3u
⊥
2

)2
.

(7)

From (6) and (7), it follows that associated with the pha-
son field there are four quadratic invariants and four inde-
pendent elastic constants. Nonvanishing elastic constants
are

K1111 = K2222 = K1,K1122 = K2211 = K2,

K1221 = K2112 = K3,K1313 = K2323 = K4,

K1212 = K2121 = K1 +K2 +K3. (8)

It should be noted that since no common term oc-
curs in (5) and the reduction equation for phonon field,
there are no invariants coupling u‖ and u⊥ and hence
no phonon-phason coupling elastic constants. Therefore,
it can be seen that there are nine quadratic invariants
and hence nine independent elastic constants for 12mm.
Among them five elastic constants are associated with the
phonon field and the rest with the phason field.

In the same way we can find all invariants and inde-
pendent elastic constants for 12 (C12) symmetry. There
are ten quadratic invariants and hence ten independent
elastic constants. Among them nine elastic constants are
the same as those for 12mm, another nonvanishing phason
elastic constant is

K1112 = K1211 = K1121 = K2111

= −K2212 = −K1222 = −K2221 = −K2122 = K5.
(9)

Dodecagonal system has seven point groups divided
into two Laue classes which we term Laue classes 17 and
18 respectively. Laue class 17 includes 12, 12, 12/m while
Laue class 18 includes 12mm, 1222, 12m2, 12/mmm. Elas-
tic properties possess an inherent centrosymmetry. There-
fore, all point groups belonging to the same Laue class
possess the same elastic properties.

3 Formulae for diffuse scattering
from dodecagonal quasicrystals

3.1 General formulae for diffuse scattering
from quasicrystals

Here we derive general formulae for diffuse scattering from
quasicrystals by a method similar to that often used for
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ordinary crystals [29]. Following the same process as de-
scribed in reference [16] the observed scattering intensity
is the average of the diffracted intensities for all the pos-
sible configurations,

I
(
q‖
)

=
1

(2π)2d−6

∑
R1,R2

∫∫
eik2·R2−ik1·R1fF (k1)F ∗(k2)

× δ‖
(
q‖ − k‖1

)
δ‖
(
q‖ − k‖2

)
ddk1ddk2, (10)

where

F (k) =
∫
ρc(x)e−ik·xddx (11)

is the structure factor of unit hypercell with ρc(x) denot-
ing density distribution in a unit hypercell and where f
denotes the average

f =
〈

eik2·u
�
R
‖
2

�
−ik1·u

�
R
‖
1

�〉
. (12)

Compared to the method given by Jaric and Nelson [7],
the difference lies in the calculation of the average. As an
approximation, we have

f ≈ e
− 1

2

�h
k1·u

�
R
‖
1

�
−k2·u

�
R
‖
2

�i2
�

(13)

which can be written as an expansion

f(R1,R2,k1,k2)

= exp
[
−1

2

〈[
k1 · u

(
R‖1
)]2〉

− 1
2

〈[
k2 · u

(
R‖2
)]2〉]

×
(

1 +
〈[

k1 · u
(
R‖1
)] [

k2 · u
(
R‖2
)]〉

+ · · ·
)

(14)

and can be seen to depend only on the difference R1 −
R2 = R. Making this substitution and after writing〈[

k1 · u
(
R‖1
)] [

k2 · u
(
R‖2
)]〉

in terms of Fourier trans-

form u
(
p‖
)
, we obtain

〈[
k1 · u

(
R‖1
)] [

k2 · u
(
R‖2
)]〉

=
(2π)3

V

×
∫ [

k1 · u
(
p‖
)]
×
[
k2 · u∗

(
p‖
)]

exp(ip‖ ·R‖)d3p‖,

(15)

where V is the volume of the studied quasicrystal.
The modes associated with the phason field u⊥ are dif-

fusive rather than propagating due to the friction that op-
poses relative motion of the incommensurate mass-density
waves. It has been pointed out in reference [11] that if the
friction coefficient coupling the incommensurate waves is
small, there may exist a regime of wave numbers where
the u⊥ mode are effectively propagating modes as has

been observed in experiment [30]. According to the gen-
eralized elasticity theory of quasicrystals [23], in this case
the equations of motion are

Cijkl
∂2u

‖
k

(
x‖
)

∂xj∂xl
+Rijkl

∂2u⊥k
(
x‖
)

∂xj∂xl
= ρ

∂2u
‖
i

(
x‖
)

∂2t
,

Rklij
∂2u

‖
k

(
x‖
)

∂xj∂xl
+Kijkl

∂2u⊥k
(
x‖
)

∂xj∂xl
= ρ

∂2u⊥i
(
x‖
)

∂2t
, (16)

with ρ being the average mass-density of the quasicrystal.
In order to find the explicit expression for u

(
p‖
)
, we

can employ (16) and the energy equipartition theorem.
Following the derivation given in reference [17] we can
easily obtain[

k1 · u
(
p‖
)][

k2 · u∗
(
p‖
)]

=
V kBT

(2π)6
k1 ·A−1

(
p‖
)
· k2.

(17)

Therefore, (14) can be replaced by

f(R,k1,k2) = e−W (k1)−W (k2)

(
1 +

kBT

(2π)3

×
∫

k1 ·A−1
(
p‖
)
· k2 exp

(
ip‖ ·R‖

)
d3p‖ + · · ·

)
,

(18)

where

W (k) =
kBT

2(2π)3

∫
k ·A−1

(
p‖
)
· kd3p‖ (19)

and where A
(
p‖
)

is hydrodynamic matrix which is de-
fined by[

A‖,‖
(
p‖
)]
ik

= Cijklp
‖
jp
‖
l ,[

A⊥,⊥
(
p‖
)]
ik

= Kijklp
‖
jp
‖
l ,[

A‖,⊥
(
p‖
)]
ik

=
[
A⊥,‖

(
p‖
)]

ki
= Rijklp

‖
jp
‖
l . (20)

Then, following the derivation given by Jaric and
Nelson [7], the scattering intensity can be evaluated and
the result can be written as an expansion

I
(
q‖
)

= I0
(
q‖
)

+ I1
(
q‖
)

+ · · · , (21)

whose first two terms are the Bragg scattering

I0
(
q‖
)

=
(2π)3V

v2
c

∑
Q

δ‖
(
q‖ −Q‖

)
|F (Q)|2 e−2W (Q),

(22)

and the lowest-order diffuse scattering

I1
(
q‖
)

=
V kBT

v2
c

∑
Q

(
q‖ Q⊥

)
·A−1

(
q‖ −Q‖

)
×
(

q‖

Q⊥

) ∣∣∣F (q‖,Q⊥
)∣∣∣2 e−2W(q‖,Q⊥), (23)
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A‖,‖
�
p‖
�

=

2
664
C11p

‖2
1 +C66p

‖2
2 + C44p

‖2
3 (C11 − C66)p

‖
1p
‖
2 (C44 + C13)p

‖
1p
‖
3

(C11 − C66)p
‖
1p
‖
2 C66p

‖2
1 +C11p

‖2
2 + C44p

‖2
3 (C44 + C13)p

‖
2p
‖
3

(C44 + C13)p
‖
1p
‖
3 (C44 + C13)p

‖
2p
‖
3 C44(p

‖2
1 + p

‖2
2 ) + C33p

‖2
3

3
775 , (26)

A⊥,⊥
�
p‖
�

=

"
K1p

‖2
1 + (K1 +K2 +K3)p

‖2
2 +K4p

‖2
3 + 2K5p

‖
1p
‖
2 K5(p

‖2
1 − p

‖2
2 ) + (K2 +K3)p

‖
1p
‖
2

K5(p
‖2
1 − p

‖2
2 ) + (K2 +K3)p

‖
1p
‖
2 (K1 +K2 +K3)p

‖2
1 +K1p

‖2
2 +K4p

‖2
3 − 2K5p

‖
1p
‖
2

#
. (27)

A⊥,⊥
�
p‖
�

=

"
K1p

‖2
1 + (K1 +K2 +K3)p

‖2
2 +K4p

‖2
3 (K2 +K3)p

‖
1p
‖
2

(K2 +K3)p
‖
1p
‖
2 (K1 +K2 +K3)p

‖2
1 +K1p

‖2
2 +K4p

‖2
3

#
. (28)

where e−2W (q) is the Debye-Waller factor.
Near a particular Bragg spot Q the scattering intensity

can be written as

I
(
Q‖ + p‖

)
≈ (2π)3V

v2
c

|F (Q)|2 e−2W (Q)

×
[
δ‖
(
p‖
)

+
kBT

(2π)3
Q ·A−1

(
p‖
)
·Q
]
.

(24)

The results obtained here coincide with those given by
Jaric and Nelson [7] except some amendments for coeffi-
cients.

If the phasons drop out of thermal equilibrium at an
elevated temperature Tq, then at a lower temperature T ,
phonons will equilibrate in the presence of a quenched
phason displacement field. This situation has been ex-
amined [7,13,16] and it has been concluded [16] that
A‖,‖

(
p‖
)
, A‖,⊥

(
p‖
)

and A⊥,‖
(
p‖
)

blocks are still given
by equation (20) but A⊥,⊥

(
p‖
)

block should be modified
by

A⊥,⊥
(
p‖
)

=
T

Tq

{
A⊥,⊥q

(
p‖
)
−A⊥,‖q

(
p‖
)

×
[
A‖,‖q

(
p‖
)]−1

·A‖,⊥q
(
p‖
)}

+ A⊥,‖
(
p‖
)
·
[
A‖,‖

(
p‖
)]−1

·A‖,⊥
(
p‖
)
,

(25)

where the subscript q means that the values of the elastic
constants at Tq should be used. It should be emphasized
that matrix A

(
p‖
)

is associated not only with phonon
and phonon-phason coupling elastic constants Cijkl(T ),
Rijkl(T ) at T , but also with all of the elastic constants
Cijkl(Tq), Kijkl(Tq) and Rijkl(Tq) at Tq. Obviously, (25)
will be reduced to that defined in (20) if T = Tq, which is
physically reasonable. The result coincides with that given
by Ishii [13].

3.2 Explicit expressions for a specific case
of dodecagonal quasicrystals

It has been pointed out in Section 2 that all point groups
belonging to the same Laue class possess the same elastic
properties due to the inherent centrosymmetry of elas-
tic properties. Therefore, matrix A

(
p‖
)

is identical for
all point groups belonging to the same Laue class. From
elastic properties of dodecagonal quasicrystals, explicit ex-
pressions of A‖,‖

(
p‖
)
, A⊥,⊥

(
p‖
)

and A‖,⊥
(
p‖
)

blocks
for each Laue class of dodecagonal system can be easily
obtained.

For Laue class 17, A‖,‖
(
p‖
)

and A⊥,⊥
(
p‖
)

blocks are
given by

see equations (26, 27) above.

For Laue class 18, A‖,‖
(
p‖
)

block takes the same form
as (26). However, in this case elastic constant K5 vanishes
compared with Laue class 17. Consequently, A⊥,⊥

(
p‖
)

block is

see equation (28) above.

It should be noted that A‖,⊥
(
p‖
)
≡ 0 for both Laue

classes 17 and 18 since there is no coupling between
phonons and phasons in dodecagonal quasicrystals. There-
fore, for quenched phasons, (25) should be replaced by

A⊥,⊥
(
p‖
)

=
T

Tq
A⊥,⊥q

(
p‖
)
. (29)

It can be seen that matrix A
(
p‖
)

is associated only with
phonon elastic constants Cijkl(T ) at T and phason elastic
constants Kijkl(Tq) at Tq.

4 Contours of constant diffuse scattering
intensity

It follows from (24) that

I1
(
Q‖ + p‖

)
=

kBT

(2π)3
S
(
p‖
)
IBragg(Q‖) (30)
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Fig. 1. Contours of constant diffuse scattering intensity in a
plane perpendicular to the periodic axis with quenched phasons
when T = 1

3Tq for the case of Laue class 17. Contours represent

S(p‖) = 16 000. Elastic constants are taken as C11(T ) = 1.0,
C13(T ) = −0.1, C33(T ) = 0.4, C44(T ) = 0.2, C66(T ) = 0.8,
K1(Tq) = 0.6, K2(Tq) = 0.5, K3(Tq) = 0.4, K4(Tq) = 0.7, and
K5(Tq) = 0.2. The indices of spots A, B and C are (2 −2 0 1
0), (−1 2 0 −1 0) and (1 −1 1 0 0) respectively.

where

IBragg(Q‖) =
(2π)3V

v2
c

|F (Q)|2 e−2W (Q) (31)

is the integrated intensity of Bragg scattering around
Bragg peak Q‖ and where S

(
p‖
)

is defined by

S
(
p‖
)

= Q ·A−1
(
p‖
)
·Q. (32)

Using (32) and explicit expression of A
(
p‖
)

for dodecago-
nal quasicrystals, we simulated contours of constant dif-
fuse scattering intensity for dodecagonal quasicrystals. In
calculation, we fix C11 = 1.0 and use the ratios of elastic
constants relative to C11 because peak shapes are deter-
mined by the relative values of elastic constants but not
the absolute values of them. Lattice constants are taken
as a = 3.7 Å, c = 5.2 Å. It should be noted that isoin-
tensity contours represent ratios of diffuse scattering to
Bragg scattering but not intensity of corresponding Bragg
peaks.

Point groups 12/m, 12/mmm represent symmetries
of Laue classes 17 and 18 respectively. Figure 1 rep-
resents a plane perpendicular to the periodic direction
with quenched phason displacements for the case of Laue
class 17. It is assumed that phason quench temperature
Tq = 3T . The diffuse scattering patterns in this plane
show twelvefold rotation symmetry which is consistent
with point group 12/m.

Figures 2–6 give the results for the case of Laue class
18 which we would like to discuss in detail. Figures 2a
and 2b illustrate diffuse scattering patterns in the plane
perpendicular to the periodic direction for quenched pha-
sons corresponding to two sets of different ratios of elastic
constants. It is still assumed that Tq = 3T . It is obvious
that the contour shapes around the same Bragg spots are
quite different in Figures 2a and 2b. Figure 2c represents
the same plane provided that both phonons and phasons
are thermalized at T . It was also assumed that the ratios
of elastic constants are the same as those in Figure 2a. The
value of S

(
p‖
)

that the contours represent in Figure 2c
is half of that in Figure 2a, which indicates that the dif-
fuse scattering decreases accompanied by slight variation
of contour shapes around the same Bragg spots due to
the reduced contribution of phason disorder in compari-
son with Figure 2a. If the diffuse scattering patterns like
those in Figures 2a-2c could be detected and measured
precisely, one could use these patterns to extract informa-
tion about elastic constants. Such experiments have been
done on a single grain of Al-Pd-Mn icosahedral phase us-
ing elastic neutron scattering [14,15]. It follows from (26)
and (28) that terms containing elastic constants C13, C33

and K4 vanish in matrix A
(
p‖
)

if the diffuse scattering
patterns are measured in the plane perpendicular to the
periodic direction as Figures 2a–2c so that such patterns
are insufficient to acquire all of the elastic constants. Fig-
ures 2d and 2e show patterns perpendicular, respectively,
to twofold axes A2P which is along the direction of arbi-
trary basis vector in quasiperiodic plane or its equivalent
direction, and A2D which is along a bisector between any
of these basis vectors and its neighboring equivalent direc-
tion with the same conditions as for Figure 2a and they
may be used to give information about the other elastic
constants that can not be present in Figures 2a–2c.

The symmetries of diffuse scattering patterns shown in
Figure 2 are consistent with point group 12/mmm. There
are two kinds of mirrors in Figures 2a–2c besides a twelve-
fold rotation axis A12 along the periodic direction. One
mirror is perpendicular to A2P and the other perpendic-
ular to A2D.

In Figures 3-5 we present comparisons of contours of
constant diffuse scattering intensity around Bragg spots
(1 0 −1 1 0) and (0 1 1 −1 0) which are collinear Bragg
spots, namely, their reciprocal lattice vectors Q‖ are paral-
lel, for quenched phasons when T = 1

3Tq. Figure 3 shows
stereoscopic contours while Figures 4a, 4b and 4c gives
diffuse scattering line shapes in planes perpendicular, re-
spectively, to A12, AQ which is along corresponding re-
ciprocal lattice vector Q‖, and AV which is perpendicular
to A12 and AQ directions. It can be seen that shapes
of isointensity contours vary greatly even for collinear
Bragg spots in comparison with those of ordinary crys-
tals. The relation of S(p‖) to 1/

∣∣p‖∣∣2 along A12, AQ and
AV directions given in Figure 5 shows that diffuse scatter-
ing intensity is proportional to 1/

∣∣p‖∣∣2 which holds for
ordinary crystals. The slope in a given direction p‖ is
associated with corresponding specific elastic constants,
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Fig. 2. Isointensity contours in planes for the case of Laue class 18. (a), (d), and (e) correspond, respectively, to planes

perpendicular to A12, A2P, and A2D axes with quenched phasons when T = 1
3
Tq. Contours represent S

�
p‖
�

= 16 000. Elastic

constants are taken as C11(T ) = 1.0, C13(T ) = −0.1, C33(T ) = 0.4, C44(T ) = 0.2, C66(T ) = 0.8, K1(Tq) = 0.6, K2(Tq) = 0.5,
K3(Tq) = 0.4, and K4(Tq) = 0.7. The indices of spots D, E, F in (d) are (1 0 −2 2 0), (−1 0 2 −1 0), (1 0 −2 2 1) and those of
spots G, H, I in (e) are (−1 1 0 0 0), (1 −2 1 1 0), (−1 1 0 0 1) respectively. (b) Similar to (a) except that elastic constants are
taken as C11(T ) = 1.0, C13(T ) = 0.1, C33(T ) = 0.6, C44(T ) = 0.8, C66(T ) = 0.2, K1(Tq) = 0.9, K2(Tq) = −0.1, K3(Tq) = −0.2,
and K4(Tq) = 0.4. (c) The same as (a) except that both phonons and phasons are assumed thermalized and contours represent
S(p‖) = 8 000.
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Fig. 3. Stereoscopic isointensity contours around Bragg spots J (1 0 −1 1 0) and K (0 1 1 −1 0) with quenched phasons when
T = 1

3Tq for the case of Laue class 18. Elastic constants are taken as those in Figure 2b. Contours represent S(p‖) = 16 000.
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i.e., slope along A12 direction is only related to C33, C44

and K4.
Figure 6 presents comparisons of stereoscopic contours

of constant diffuse scattering intensity around Bragg spots
(2 1 −2 −2 1) and (0 −1 2 −1 0) among which the lat-
ter is indicated in Figure 2a, for quenched phasons when
T = 1

3Tq. In calculation, we consider three sets of elastic
constants. Only phonon elastic constants in Figure 6b and
phason elastic constants in Figure 6c are changed with re-
spect to those in Figure 6a. It is evident that the shape of
isointensity contour around reflection (0 −1 2 −1 0) which
has large Q⊥ component varies greatly in Figure 6c but
slightly in Figure 6b in comparison with that in Figure 6a
while the very reverse results can be found for reflection
(2 1 −2 −2 1) which has large Q‖ component. The fact
that peak shapes of Bragg spots with large Q⊥ compo-
nent are dominated by phason elastic constants can be
accounted for by special phason degrees of freedom in
quasicrystals which also give rise to the variation of peak
shapes among collinear Bragg spots as shown in Figures 3
and 4.

5 Conclusion

Explicit formulae for diffuse scattering from dodecagonal
quasicrystals have been derived in terms of the elastic con-
stants. Isointensity contours of diffuse scattering were cal-
culated to examine the effect of phonon and phason dis-

orders on diffuse scattering from dodecagonal quasicrys-
tals. The symmetries of diffuse scattering patterns are con-
sistent with corresponding point groups. Unlike ordinary
crystals, shapes of isointensity contours are much more
complicated and varies even among the collinear Bragg
spots due to the additional phason degrees of freedom.
Quantitative examination of diffuse scattering patterns
may yield numerical values of the elastic constants.

This work was supported by the National Natural Science
Foundation of China and by Postdoctoral Science Foundation
of China.

Appendix

In this appendix, we give the coordinate systems for do-
decagonal quasicrystals used in this paper. The structure
of dodecagonal quasicrystals is conveniently described in
5D hyperspace E = (E‖, E⊥) that may be decomposed
into two orthogonal subspaces: E‖, the 3D physical or par-
allel space with orthogonal unit basis vectors E‖1, E‖2, E‖3,
and E⊥, 2D complementary or perpendicular space with
orthogonal unit basis vectors E⊥1 , E⊥2 . Every spot in the
diffraction pattern of dodecagonal quasicrystals may be
indexed using a combination of five reciprocal basis vec-
tors e∗i , i = 1, 2, . . . , 5 which can be written as

see equation (33) above
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contours representing S(p‖) = 16 000n (n = 1, 2, . . . , 10). The other parameters are taken as those in Figure 3.
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Fig. 6. Comparisons of stereoscopic isointensity contours around Bragg spots (2 1 −2 −2 1) and L (0 −1 2 −1 0) with quenched
phasons when T = 1

3
Tq for the case of Laue class 18. Contours represent S(p‖) = 16 000. Elastic constants are taken as follows:

(a) C11(T ) = 1.0, C13(T ) = −0.3, C33(T ) = 0.3, C44(T ) = 0.5, C66(T ) = 0.2, K1(Tq) = 0.9, K2(Tq) = −0.3, K3(Tq) = −0.4,
and K4(Tq) = 0.7; (b) C11(T ) = 1.0, C13(T ) = 0.2, C33(T ) = 0.5, C44(T ) = 0.5, C66(T ) = 0.7 and the same phason elastic
constants as those in (a); (c) the same phonon elastic constants as those in (a) and K1(Tq) = 0.2, K2(Tq) = 0.3, K3(Tq) = 0.4,
K4(Tq) = 0.8.
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where a∗ and c∗ are the reciprocal lattice constants. Con-
sequently, the direct basis vectors ei, i = 1, 2, . . . , 5 recip-
rocal to e∗i , i = 1, 2, . . . , 5 are given by
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where a, c are the lattice constants and a = 1/a∗, c = 1/c∗.
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